Report L-25664

THE CRITTER SYSTEM: ANALYZING DIGITAL CIRCUITS BY PROPAGATING

iwe BEHAVIORS AND SPECIFICATIONS
f;fﬂ Lou Steinberg
I Van Kelly
De Depar tment of Computer Science
~ Rutgers University
== New Brunswick, NJ 08303
=
t 1
g_i July 982
gg? Interim Technical Report

ARPA Order No.: Lik7

Contract No.: NO0O14-81~-K-0394

Effective and Expiration Dates: March 1, 1981 - February 28, 1983
Principal Investigators: Prof. Tom Mitchell and Prof. Saul Amarel
Telephone No: (201) 932-3259

Frepared For

ADVANCED RESEARCH PROJECTS AGENCY
1400 Wiison Boulevard
Arlington, Virginia 22209

OFFICE OF NAVAL RESEARCH
800 North Quincy Street
Arlington, Virginia 22217

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S.
Government.

DTIC FILE COPY

T T a1 i

e > o ST

LR

W

Vi

e

B

SECUXITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
|7 REPORT NUMBER 2. Tov‘r ACCESSION NO.J 3. RECIPIENT'S CATALCG NUMBER
‘ R T 7,
4-25664 AD-A411788
4. TITLE (and Subtitle) i §. TYPE OF REPORT & PERIOD COVERED

THE CRITTER SYSTEM: ANALYZING DIGITAL CIRCUITS
BY PROPAGATING BEHAVIOR AND SPECIFICATIONS

6. PERFORMING ORG. REPORT NUMBER

4-25664

Van E. Kelly

Louis I. Steinberg NO0014-81-K-0394
P PR R T
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::3'i"."u‘.o‘n’e’.<‘35?‘r"~$’§.°.‘¢'§§' TASK

8. CONTRACT OR GRANT NUMBER(S)

7. AUTHOR(s)

Rutgers University
Laboratory for Computer Science Research
New Brunswick, New Jersey 08903

Arl ;q%:m A7:% 22209
""MONITORING AGENCY NAME & ADDRESS(I! dlfferent from Controlling Office) | 1S. SECURITY CLASS. (of this report)

16. DISTRIBUTION STATEMENT (of this Report)

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency July 1982

1400 Wilson Boulevard 3. NUMBER OF PAGES
i 18

Office of Naval Research

800 N. Quincy Street Unclassified ‘
Arlington, Virginia 22217 ‘W

Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side i{ necessary and identify by block number)

CAD, design, representation, digital systems, verification

20. ABSTRACT (Continue on reverse side If neceseary and Identity by block number)

CRITTER is a system that reasons about digital hardware designs, using a
declarative representation that can represent components and signals at
arbitrary levels of abstraction. CRITTER can derive the behaviors of a
component 's outputs given the behaviors of the inputs, it can derive the
specifications a component's inputs must meet in order for some given
specifications on the outputs tc be met, and it can verify that a given
signal behavior satisfies a given specification. By combining these

L

DD , :2:-.,, 1473 EDITION OF ! NOV 65 IS OBSOLETE
S/N 0102-LF-014-6601

———
SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entereq)

o . MR S

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Block 20 continued

operations, 1t evaluates both the correctness ané the robustness of
the overall design.

Accession For

| NTIS CRA&I
DTIC TAB

Unannounced [
Justification . 1

By e
Distribution/

Availability Codes

Dist

SECURITY CLASSIFICATION OF THIS PAGE(When Daca Entered)

THe CRITTER System
ANALYZING DigiTaL CircuiTs
BY PROPAGATING BEHAVIORS 1
AND SPECIFICATIONS ‘

Van E. Kelly i
Louis | Steinberg ‘
Department of Computer Science
Rutgers University
New Brunswick, NJ 08803

To appear in
Proceedings of the National Conference
on Artificial Inteligence, 1982
also
Digital Re-Design Project Working Paper No. 6

This material is based on work supported by the Defense Advanced Research Projects
Agency under Research Contract N00014-81-K-0394. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US. Government

Kelly and Steinberg The CRITTER System

ABSTRACT

CRITTER is a system that reasons about digital hardware designs. using a declarative
representation that can represent components and signals at arbitrary levels of abstraction
CRITTER can derive the behaviors of a component's outputs given the behaviors of the
nputs, 1t can derive the specifications a component's inputs must meet in order for some
given specifications on the outputs to be met, and it can verify that a given signal behavior
satisfies a given specification. By combining these operations, it evaiuates both the

correctness and the robustness of the overall design1

1. INTRODUCTION: REASONING ABOUT DIGITAL CIRCUITS
in understanding or explaining a digital circuit, a human engineer's reasoming is flexible n
several ways:

1. Behavior vs. Specification: The engineer can reason about what wi//
happen in the circuit, given some input lits behavior), or about what ought to
happen in order for the circuit to perform as desired (its specifications). In a
correctly working circuit, the behavior must satisfy the specifications, but the
two need not be identical, especially in matters of timing, "over-satisfaction’
of some specifications is good practice.

2. Forward vs. Backward: The engineer can either use some fact about the
inputs to a component to infer something about the output (forward
reasoning), or vice—versa (backward reasoning).

3. Level of Abstraction: In reasoning, the engineer can treat each physical
compongnt separately or can view several components as a single functional
module. Aiso, the engineer can view electrical signals at different levels of
abstraction, e.g. as sequences of high/low voltages or as ASCIl characters.

4. Degree of Specificity: The engineer can reason about the vaiue of a signal
either at a specific time or over all time (e.g. "The clock can never rise while
this signal is high”) Also, the engineer can deal with specific data and time
values. eg "10 nsec. after the clock rises”, or general predicates, eg

"

"between 5 and 10 nsec. after ..".

We have developed a system, called CRITTER, that displays some of this same flexibility.
CRITTER does forward reasoning about behaviors and backward reasoning about
specifications, propagating information step by step through a circuit in a manner
reminiscent of constraint propagation systems [1, 2, 3, 7, 8, 8] and Waldingers Goal
Regression {11]. CRITTER handles varying levels of abstraction, statements about specific
values or more general predicates. and statements quantified over ali time.

CRITTER is a system for “critiquing” digital circuits. That is, it is designed to deductively
solve the following problem:

1Trus material 1s based on work supported bv the Defense Advanced Research Projects Agencv under
Research Contract NQOD14~-81-K~-03384. The views and conciusions contaned in this document are those of
the authors and should not be interpreted as necessarily representing the official policies, either expressed or
imphed, of the Defense Advanced Fesearch Projects Agency or the U.S. Government.

29 July 1982 1

A o A KT N o s Ay - D e e e gt A< e

Kelly and Steinberg The CRITTER System

Given the behavior of a circuit's inputs and the specifications on its
outputs, determine the behavior and specifications for each signal in the
circuit and whether each signal’s behavior meets all i1ts specifications.

We also believe CRITTER's reasoning methods will prove valuable in other design tasks
besides critiquing. In particular, our work on CRITTER has been part of a project on
redesign aids [6]. We also envision applications in creating, debugging and documenting
designs and in troubie-shooting physical hardware.

2. THE ANATOMY OF CRITTER
In this section we will describe how CRITTER represents and reasons about circuits
First, however, we will introduce the circuit we will be using as a running example.

2.1. The Exampie Circuit
The circuit is shown in Fig. 2-1 For purposes of exposition, it is a bit simpler than the
real circuits on which we have used CRITTER (See Sec. Ill)

ASCII-IN
_— LATCHED~
tatch ASC!! Rom EBLCDIC-0UT

CLK L ——> R —_—

Figure 2-1:
THE EXAMPLE CIRCUIT:
AN ASCII-EBCDIC CODE CONVERTER

This circuit is designed to convert ASCIH alphanumeric characters to their EBCDIC
equivalents. Every 576 nanoseconds a character appears at the input ASCI-IN, and is held
there for 300 nsec. After each character appears, the clock signal CLK will rise.

The actual translation to EBCDIC is done by ROM iread-only-memory) R, but this particular
ROM requires its input to be available for at least 500 nsec. The input characters are only
avaiiable for 300 nsec. so we also have latch L which samples a character each time CLK
rises and keeps it stable for the ROM until the next rise of CLK

29 July 1982 2

e v ret s

-

--

Eaati -

F e ah D e A £ R A A R

Kelly ang Steinberg The CRITTER System

2.2. Representation of Circuits

The physical structure of & circurt 1s represented by modul/es and data-paths A module
represents either a single component or a cluster of components being viewed as a single
functional block. In Fig 2-1. both the latch and the ROM are modu/es and we could regard
ther composite as a module as well if we chose to do so. Similarly, a data-path
represents either a wire or a group of wires.

2.2.1. Signals

The data flowing on a data path 1s viewed as a data-stream, which represents the entire
hustory of the data on the path as an infinite sequence of data elements. i.e. as an array
with subscripts runming from 1 to infinity Each element s characterized by a set of
features such as 1ts TYPE, VALUE, START-TIME, and DURATION.

The behavior of a data—stream s represented by a formula for each feature, giving the
value of the feature for an element as a function of the element's subscript For instance.
Fig 2-2 gwves the set of behavior formulas for the ASCIl characters at the input to the
LATCH. (The syntax used by the CRITTER has been slightly modified here and in the other
examples for the sake of readability) Essentially Fig 2-2 says that

For all i from 1 to infinity there exists a unique data element ASCIi—INi).
whose TYPE is .., whose VALUE is .., etc

Note that all times in the circuit are given relative to some arbitrary TO.

NAME of signal ASCI1-1IN

INDEX-STRUCTURE = ([i (from 1 to +INFINITY)])
TYPE (i) = ASC!1-CHARACTER
VALUE (i) = NOT-SPECIFIED
START-TIME (i) = (576%i + L35) nsec. after TO
DURATION (i) = 300 nsec.

Figure 2-2:

GIVEN BEHAVIOR FOR ASCIi-IN

A signal can also be described as an array of more than one dimension; the additional
dimensions describe the substructure of the larger repeating elements. For example. Fig.
2-3 gives the behavior for the other input signal, the clock pulse for the iatch. It says

that each element of the data-stream has subparts numbered O to 3, and gives formulas
for the features of the subparts.

It is interesting to note that the two input signals are described at two very different
levels of abstraction. The clock is described in terms of high and low voltages, which are
even less abstracted than bits. The other input is described as a stream of characters,
leavirg implementation details implicit, including the fact that an ASCIl character requires 7
bits 1o represent, and thus the LATCH module must really be 7 physical latches. The ability

29 July 1982 3

e o it an

C G e N N S T L i e A b (g AL i1

Kelly anJ Steinberg The CRITTER System

= NAME of signal = CLK |
.]
% INDEX-STRUCTURE = ([i (from 1 to +Infinity)] E
, [phase# (from 0 to 3)]) 3
1 TYPE (i,phase#) = VOLTAGE-LEVEL !
} VALUE (i, phase#) = (CASE phase# of
k 0: RISE
: 1: HIGH
2: FALL
y 3: LOW) ;
START-TIME i
(i ,phase#) = [576%(i+1) + i
(CASE phase# of i
0: 20 5
1: 21 f
2: 92
E 3:93)]
o nsec. after TO
: DURATION
; (i ,phase#) = (CASE phase# of
. 0: 1
1: 71
- 2: 1
3 503) nsec.

PERIQD = 576 nsec.

Figure 2-3:
GIVEN BEHAVIOR FOR CLK

not only to abstract, but to mix levels of abstraction freely in a single circuit. is a
powerful tool for focusing CRITTER's attention on the critical analytical issues within each

circuit and suppressing insignificant detail.?

2.2.2. Modules
2 A module's operation is described by a set of operating conditions and a set of
' mappings. An operating condition is a specification (i.e. a predicate) on a module's inputs
that must be met if the module is to work. For example, in Figure 2-4, operating
condition [4] states that the clock for a given character must occur at least 20 nsec.
after the character starts, i.e. the "setup time" for this latch is 20 nsec. Condition [6]
! says there must not be a clock between characters.

For each output of a module there is a mapping which gives a formula for each feature
of the output in terms of features of the inputs. For example, Figure 2-5 says that the

- |
|

2
MNote, however, that CRITTER does not choose its own abstractions; they must be supphied from outside.

! 29 July 1982 a

T ey vt YT NN R R Y DR B SN -

Kelly and Steinberg The CRITTER System

{1]. CLK must fit the definition of a
STANDARD-CLOCK.
(i.e. two dimensions, periodic, etc.)

[2]. INDEX-STRUCTURE of ASC!I~IN must match
“([#% (from 1 to +Infinity)])".

(3]. FOR ALL i > 0, j IN {1,3}
DURATION[CLK (i j)] >= 20 nsec.

[4L]. FOR ALL i > 0, the time of the
NEXT (RISE of CLK) after
START-TIME[ASCII-IN (i)]
>= START-TIME[ASCII~IN (i)]
+ 20 nsec.

[5]. FOR ALL i > 0, the time of the
NEXT (RISE of CLK) after
START-TIME[ASC!II~IN ()]
< START-TIME[ASCII-IN (i)]
+ DURATION[ASCI!I-IN (i)].

[6]. FOR ALL i > 0, the time of the
NEXT (RISE of CLK) after
(START-TIME[ASCII~IN (i}]
+ DUR/TION[ASCII~IN (i)])
> START-T ME[ASCIHI-IN (i+1)].

Figure 2-4:
OPERATING-CONDITIONS OF LATCH L

output LATCHED~ASCI is a data-stream with elements from one to infinity, and tells how
features of these elements depend on features of CLK and ASCH-IN. Note that a mapping
is only reliable if all of the module's operating conditions are met by its inputs.

LATCHED-ASCI
([i (from 1 to +Infinity)])
TYPE[ASCII=IN(i)]
VALUE[ASCHI~IN (i)]
{the time of the
NEXT (RISE of CLK) after
START-TIME[ASCII=IN () D)
+ 35 nsec.
DURATION (i) = PERIOD[CLK] - 35 nsec.

Figure 2-5:
INPUT/QUTPUT MAPPING OF LATCH L

NAME of output
INDEX~STRUCTURE
TYPE (i)

VALUE (i)
START-TIME (i)

As another example, Fig. 2-6 gives the operating conditions and mapping for ROM R

29 July 1982 5

FQAs

T TETTEmEETTET s e o LT

T T e T W

Kelly and Steinberg The CRITTER System

OPERATING-CONDITIONS

[1]. INDEX-STRUCTURE of input LATCHED-ASC!!
must match ' ({* (from 1 to +INFINITY)])'

[2]. FOR i >0
TYPE [LATCHED-ASCH1 (i)] = ASC))-CHARACTER

[3]. FOR i > 0
DURATION [LATCHED-ASC!I (i)] > 500 nsec.

INPUT/OUTPUT MAPPING OF ROM:

EBCDIC-0QUT
([i (from 1 to +infinity)])
EBCDIC-CHARACTER
ASC-TO-€EBCD

(VALUE [LATCHED-ASCII (i}])
START-TIME [LATCHED-ASCI! (i)]

+ 500 nsec.

DURATION (i) = DURATION [LATCHED-ASCI!! (i)]
: - 250 nsec.

NAME of output
INDEX-STRUCTURE
TYPE (i)
VALUE (i)

START-TIME (i)

Figure 2-6:
DESCRIPTION OF OPERATION OF ROM R

2.3. Reasoning Methods

Using these representations, CRITTER can derive the behaviors of a module's outputs
given the behaviors of the inputs, it can derive the specifications a moduie's inputs must
meet in order for some given specifications on the outputs to be met, and it can verify
that a given behavior satisfies a given specification. We will now discuss these kinds of
reasoning.

2.3.1. Propagating Behaviors Forward

To caiculate the behavior of a module’s outputs, given the behawor of its inputs, one
symbolically applies the module mappings to the inputs, by a process of substitution. The
behavior of the output resembies the mapping, but with every reference to a feature of
the input replaced by the corresponding formula from the input's behavior. For instance, to
calculate the DURATION of the latched—characters we substitute the behavior of the CLK
from Figure 2-3:

PERIOD = 576 nsec.
into the DURATION formula of Figure 2-5:

DURATION (i) = PERIOD{(CLK) - 35 nsec.
= 576 nsec - 35 nsec.
= 541 nsec.

29 July 1982 6

v

>

=T

Y T T W T Ty LI
3 .

g T

hoat e e i anblh el B b b AR

Ml e

aindain doc 4 L I ot a ol o e e £ £ i

kelly and Steinberg The CRITTER System

On the other hand. since nothing 1s specified in Figure 2-2 about the VALUE of each
incoming character. nothing can be substututed in the VALUE formula of the LATCHs 1I/0
mapping. so the formula

VALUE (i) = VALUE[ASCII-IN (i)]

is all that we know about that feature of the output behavior. A complete calculation of
the behavior of the output of the latch is given in Figure 2-7

LATCHED-ASCI I

NAME of signal
([i {from 1 to +INFINITY}])

INDEX-STRUCTURE

TYPE (i) = ASC!|-CHARACTER
VALUE (i) = VALUE[ASCII-IN (i)]
START-TIME (i) = [576%i + 631) nsec. after TO
DURATION (i) = 541 nsec.

Figure 2-7:

CALCULATED BEHAVIOR OF OUTPUT OF LATCH

Note that this substitution operation depends on the input behavior being represented as
<feature> = <formula> rather than in the more general predicate form we use for
operating conditions. The mapping must aiso be represented as <feature> = <formuig> |If
not, the substitution can still be done, but it will resuit in a behavior which does not have
the <feature> = <formula> form and cannot be further propagated.

Forward propagation can generate some messy expressions. CRITTER does some
algebraic transformations to simplify expressions as much as it can. For instance, in
calculating the START-TIME of LATCHED-ASCI it transforms

[NEXT (576% (j+1) + 20) AFTER (576%i + 435)] + 35
into

576%i + 631

Of course, the forward propagation is not valid unless the module's operating conditions
are met, but this is checked as part of checking in general whether a data-stream meets
its specifications, which is discussed below.

By repeated propagation, CRITTER can produce a behavior for each data-stream in a
circuit, given behaviors for the circuit's inputs. Figure 2-8 gives the calculated behavior of
the ROM's output, produced by propagating the behavior of LATCHED-ASCH one step
further.

2.3.2. Propagating Specifications Backward

Just as forward propagation computes the behaviors of the data-streams, CRITTER uses a
process of back propagation to derive the specifications that these behaviors must meet
More specifically, given specifications (ie. predicates) involving the output of any module.
CRITTER can back propagate them, that is, derive a set of specifications involving the

29 July 1982

M aaiithaalindeaste Sn shabaling Ay

ey,

Kelly and Steinberg The CRITTER System

NAME of signal = EBCDtC-0OUT
INDEX-STRUCTURE ([i (from 1 to +INFINITY)])
TYPE (i) EBCDIC-CHARACTER
VALUE (i) = ASC-TO-EBCD

(VALUE [ASCII=IN (i)])
(576%i + 1131) nsec. after TO
281 nsec.

START-TIME (i)
DURATION (i)

Figure 2-8:
CALCULATED BEHAVIOR OF ROM OUTPUT

nputs to that module which are sufficient to ensure that the original output specification
will be met (This is a hardware analog of Dijkstras "Weakest Precondition” [4]) Thus,
given specifications involving the "global” outputs of a circuit, CRITTER can repeatedly back
propagate them to produce specifications for ail data-streams in the circuit

Like forward propagation, back propagation is also done by a process of substitution
Each reference in the specification to a feature of the module's output is replaced by the
corresponding formula from the module's mapping. For instance, Fig. 2-8 gives a set of
specifications for the output of our example crrcurt Back—-propagating specification [3]
of Figure 2-9 through the mapping of the ROM and simplifying gives:

For al'i j > 0,
DURATION[EBCDIC-0UT (i)] > 200

DURATION[LATCHED-ASCII(i)] - 250 > 200
DURATION[LATCHED-ASCIT (i)] > L50 nsec.

>

=>

This substitution also depends on the //O mapping being represented as
<feature> = <formula>

Of course. in order to produce the right output, the inputs to a module must first meet
the operating conditions of the module. So, in addition to the specifications produced by
substitution, the specifications on the input to a module must aiso include the operating
conditions. It is this complete set of specifications which is further back propagated.

2.3.3. Checking Behaviors Against Specifications

Having derived the behavior and specifications for each data-stream. CRITTER must check
to see if the specifications are met In our case studies to date, CRITTER has been abie tc
do this by replacing each feature—reference in the specification with the corresponding
formula from the behavior, and then applying very straightforward simplifications to
produce propositions which can be checked trivially For instance, specification [4] in
Figure 2-9 reduces to the inequality 576 > 500, by simple symbolic subtraction of
polynomials. it remains to be seen whether further examples will require more
sophisticated proof technigues.

When the form of a specification is a single-sided arithmetic inequality, the margin by
which that inequality is satisfied (e.g 76 nsec. in specification [4]) represents a crude

29 July 1982 8

|
{
i

Kelly and Steinberg The CRITTER System

[1] INDEX-STRUCTURE of EBCDIC-QUT must match
"([i (from 1 to +INFINITY)])'

[2] FOR ALL i > 0,
VALUE (i) = ASC-TO-EBCD
(VALUE [ASCII=IN (i)])
[3] FOR ALL i > 0,
DURATION (i) > 200 nsec.

[4] FOR ALL i > 0,
START-TIME (i+1)
- START-TIME (i) > 500 nsec.
Figure 2-9:
SPECS INVOLVING STREAM EBCDIC-0OUT

measurement of how conservative the circuit design is with respect to that specification
Thus CRITTER can determine not only if a design is correct (meets its specifications) but to
some extent how robust it is.

Note that if we could do only forward propagation we could still verify the correctness
of the circuit and get robustness measures for the circuit's outputs. If we could do only
back propagation we could verify correctness and get robustness measures for the circuit's
inputs. However, in order to get robustness estimates for an internal data-stream we need
both its (forward progagated) behavior and all (back-propagated) specifications involving it.

3. DISCUSSION

3.1. “In-Context” Module Descriptions

It should be noted that in our example we described our latch as if the only thing it
could do is extend the duration of its input However, a real latch can also be used, for
instance, to select every other element from its input data-stream What we have done is
to place an artificial restriction on the input domain of our latch, in this case requiring
there to be a clock pulse for each character. This then allowed us to use a much simpler
mapping for the module. This is an example of a uszge-specific or /n-context module
description. Such simplified mappings are much easier for people to write, and they resuit
in less simplification being needed during propagation, but what we wind up with is not
really a representation of a "latch” but rather of a "latch used as duration extender”

As long as the behaviors of all input signal of the module obey the more restrictive "in—
context’ operating conditions, the result of forward propagation is unchanged by the
simplification. However, back propagation of specifications will produce input pre-
conditions that are not as weak as possible In verifying a design that is already complete
and correct, this is not necessarily bad, it just means that CRITTER may be overly
conservative in estimating robustness. When using CRITTER incrementally, however, to

29 July 1982 9

Kelly and Steinberg The CRITTER System

evaluate fragments of a design n progress over-strong pre-conditions might entail
frivolous and arbitrary restricions on possible methods for completing the agesigr it
remains 10 be seen how much of a problem this 1s in practice

It 1s uncertain if the set of all common component usages is small enough that a library
of them would be useful, or i1f in-context descriptions should be generated individually only
as needed We are currently working on methods to automatically generate In-context
descriptions from out-of-context descriptions

3.2. Data Abstraction

As we have seen, data-streams can be described at various levels of abstraction In fact
the module that produces a data—stream may empioy a different abstraction from the
module that uses it For instance, a counter might be described as transmitting a seguence
of integers while a latch which receives these numbers might consider them simply as
vectors of bits. We handle this kind of translation by interposing a type-converter
pseudo-modul/e to convert the numbers to bit vectors. A pseudo-module 1s represented
just like any other module, but it corresponds to a change in interpretation, rather than to a
physical component. The same propagation methods work on pseudo-moduies as on real
modules

3.3. Limitations

3.3.1. Feedback and State

CRITTER still has a number of limitations. One major problem is that it cannot handle
circuits with inter—-module feedback. That is. it can only handie circuits in which the
relation "module A uses the output of module B" induces a partiai order. This is a less
drastic limitation than it might appear since there are many useful and inteiesting circuits
that have no inter—-module feedback f(i.e. where feedback loops exist. they are enclosed
within a single module).

None the less. this is a serious limitation, and we place a high priority on removing it
We plan to look at both the previous work on cycles in constraint networks feg.
[1. 3. 7. 8 9]) and the work on using loop invariants in program verification [4 5]

Another limitation 1s that we do not deal explicitly with the internal state of a component
such as a RAM or a latch. This, like internal feedback loops. can be concealed from
CRITTER by choosing a suitably abstract "in-context” description for a module We expect
that once we can handle feedback. we can model internal state as an implicit feedback
path. as 1s done with formal Finite State Automata

29 July 1982

TR T T T T T g
_ ———— " " " " —_— ¥ .____xﬁ
-
A ———— e - - . - — et —— At - -

Kelly and Steinberg The CRITTER System

3.3.2. Uncertainty
Our <feature>=<formula> noctation for behaviors and mappings mmplies that we know a
, precise formuia for each feature However for parameters like delay througn a

Rt AR S e A

component. the parts catalogue normally gives a range of possibie vaiues One solution to
this 1s to embea uncertainty in these formuias by introducing s/ack variables to represent
it eg

- for ail i > 0,
' START-TIME {out (i)) =
(START-TIME (in (i))) + SLACK,

The restrictions on the uncertainty. eg 10 nsec < SLACK, < 20 nsec. can be carried aiong
separately

i
3
H
!

3.4. Relation to Constraint Propagation
Qur desire to do propagation both forward and backward and to eventually handle
feedback lead us to view CRITTER as a kind of constraint propagation system However,
much previous constraint-system work [1. 3. 7. 8. 9] has focused on problems of finding
consistent solutions to complex networks of constrants, and has assumed that the
individual values and constraints were quiteé smple In contrast, our focus has been more
ke that of Stefik [10], in that we have put off dealing with complex networks (eg
feedback). but have dealt with richer kinds of values and constraints In particular
e Because we need to deal with enure time histories cf signals and even
arbitrary predicates on these time histories rather than with single values or
small sets of wvalues, our individual propagation steps nvolve symbol
substitution rather than, eg. arithmetic operators In fact we really have two
kinds of propagation, one for behaviors and another for specifications, but
we can use the same representation of our constraint ue the module

function) and just apply different processes to 1t for the two kinds of
propagation.

e Since a specification really expresses a constraint among several data—streams
(e.g. conditions 4-6 in Fig. 2-4), back-propagation 1s really the propagation of
one kind of constraint (a specification) through another kind of constraint (a
function). We could even express both these constrants in the same
language. except that in order to do the substitution. the function mapping has
to be in a <feature> = <formula> form

3.5. Early Experiences With CRITTER

CRITTER has been used to test a fragment of a mature circuit design (1976 for a TTL-
based CRT terminal video controlier. About thirty specifications in all had to be satisfied.
on a total of nine DATA-STREAMS. Surprisingly, it quickly discovered a potential timing
anomaly that had never been noticed before in conventional testing, nor in actual use of the
circut.

29 July 1982 1

Kelly and Stemnberg The CRITTER System

4. CONCLUSIONS

CRITTER thus embodies varieo ana useful kinds of reasoning about digital circuts These
reasoning abihties are useful for automatically critiguing a circuit. and should be applicable
to several other tasks as well One pressing need is to extend CRITTER to handle circuits
with feedback and components with state We also plan to implement mechanisms to
handle the slack variables. and to try to apply CRITTER's reasoning methods to other tasks,
such as trouble-shooting and automatic design

5. Acknowledgments

The work reported here was done as part of the Digital Design Project at Rutgers
University. Other members of the group, including Tom Mitchell, Pat Schooley, Jeff
Shulman, and Tim Weinrich, have made significant contributions to the ideas and programs
discussed above. Tom Mitchell and Pat Schooley also made a number of particularly heipful
comments on earlier drafts of this paper

29 July 1982 12

Kelly and Steinberg The CRITTER System

(2]

(3]

(4]

(8]

£el

(7]

£el

(9]

(10]

(111

29 July 1982

References

Borning. A

The Programming Language Aspects of ThingLab, a Constraint—-Oriented Simulation
Laboratory.

ACM Transactions an Programming Languages and Systerns 3(4)353-387. Octoper
1981

de Kleer, Johan and Gerald J. Sussman.
Propagation of Constraints Applied to Circuit Synthesis.
Memo No. 485 MIT. September, 1978

de Kleer, Johan
Causal and Teleological Reasoning in Circurt Recognition
PhD thesis, MIT, January, 1979

Dijkstra, Edsger W.
A Discipline of Programming.
Prentice—Hall Inc., Englewood Cliffs, N.J. 1976

Greif, Irene and Meyer, Albert R

Specifying the Semantics of while Programs: a Tutorial and Critique of a Paper by
Hoare and Lauer

ACM Transactions on Programming languages and Systems 3(4)484-507. October.
1881

Mitchell, T ., Steinberg. L. Smith, RG. Schooley, P.. Kelly. V and Jacobs. H

Representations for Reasoning About Digital Circuits.

Proceedings of the Seventh /nternational Joint Conference on Artificial
Intelligence 1:343-344, 1981

tJCAI7

Staliman, RM. and Sussman, G.J

Forward Reasoning and Dependency-Directed Backtracking in a System for
Conputer—Aided Circuit Analysis.

Artificial Intelligence 9(2)135-186, October, 1977

Steele. GL.

The Definition and |mplementation of a Computer Programming Language Based
on Constraints.

PhD thesis, MLT., August. 1980.

Steels, L.
Constraints as Consultants.
Al Memo 14, Schiumberger—Doll Research, December. 1981

Stefik, M.J.

Planning With Constraints.

PhD thesis, Stanford University, January, 1980.
CSD REPORT Stan—-CS-80-784

Waidinger, R.J.

Achieving Several Goals Simultaheously

in Elcock, E and Michie, D. (editor). Machine /ntelligence 8, pages 94-136. Ellis
Horwood, Chichester, 1977.

Mmi8.

Kelly and Steinberg The CRITTER System

Table of Contents

. 1 INTRODUCTION: REASONING ABOUT DIGITAL CIRCUITS 1

' 2 THE ANATOMY OF CRITTER 2
2.1 The Example Circuit 2

2.2. Representation of Circuits 3

2.2.1. Signals 3

: 2.2.2. Modules 4
H 2.3 Reasoning Methods 6
' 2.3.1. Propagating Behaviors Forward 6
2.3.2. Propagating Specifications Backward 7

2.3.3. Checking Behaviors Against Specifications 8

3 DISCUSSION S

3.1 "iIn-Context” Module Descriptions 9

3.2. Data Abstraction 10

3.3. Limitations 10

3.3.1. Feedback and State 10

3.32. Uncertainty 11

3.4. Relation to Constraint Propagation 11

35. Early Experiences With CRITTER 1

4. CONCLUSIONS 12

5. Acknowiledgments 12

29 Jly 1982 i

R A o A

- itadodinde A IR ALXE IS B AR A

Keily and Steinberg

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

[SESE SIS SIS U S L)

29 July 1982

LCoNOOARGN =

The CRITTER System

List of Figures
THE EXAMPLE CIRCUIT: AN ASCII-EBCDIC CODE CONVERTER
GIVEN BEHAVIOR FOR ASCII-IN
GIVEN BEHAVIOR FOR CLK
OPERATING-CONDITIONS OF LATCH L
INPUT/OUTPUT MAPPING OF LATCH L
DESCRIPTION OF OPERATION OF ROM R
CALCULATED BEHAVIOR OF OUTPUT OF LATCH
CALCULATED BEHAVIOR OF ROM OUTPUT
SPECS INVOLVING STREAM EBCDIC-0QUT

CONOOORA~LWN

